Sustainable sourcing in the fashion industry

By: Yonis Osman Bileh <u>Yonis-osman@hotmail.com</u> 0707896211

B.Sc Design and Product Realisation from KTH Currently: MSc Industrial Management at KTH www.linkedin.com/in/yonis-osman-7780711a4

What sustainable sourcing practices are relevant in the fashion industry?

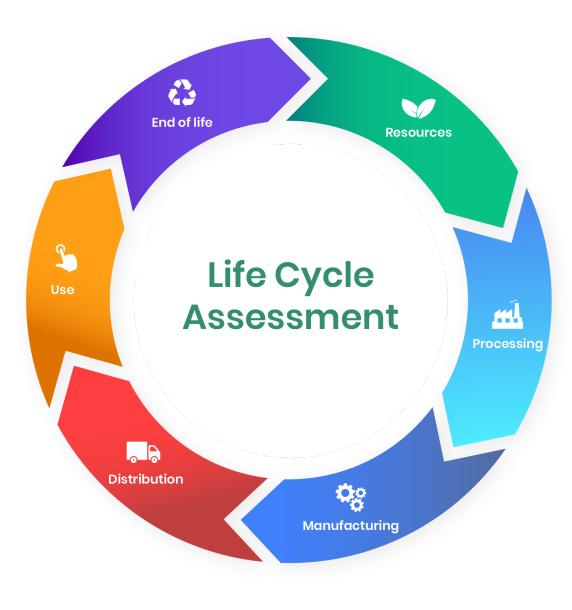
Agenda

- What is sustainable sourcing?
- What are the issues?
- Sustainable practices.
- Methods.
- Criteria for evaluating sourcing factors.
- Results.
- Implications of the result.
- In conclusion.

What is sustainable sourcing?

- Minimize environmental impacts
- Promotes ethical considerations
- Energy consumption
- Pollution
- Human rights
- Workers wages

Source: (Van Wheele & Rozemeijer, 2022)


What are the issues?

- Despite growing awareness
- Many struggle to identify and prioritize effective strategies
- Consumers prefer environmentally friendly products
- According to the EU 10% of global emissions originate from fashion sector
- Compelled to adopt sustainable practices
- Sustainable development goals
- Pressing need for strategies to reach goals

Source: (McKinsey&Company, 2023)

Sustainable practices

- Life cycle assessment
- Supply Chain Optimization
- Material Substitution
- Investment in Innovation

Methods

- Mixed method approach
- 3 key phases
- Combined with key factors
- 3 illustrative examples: Cotton, Hemp and Polyester

Data collection	Material data analysis	Weighted SUM & Weighted product model (WSM & WPM)			
 Literature Industry	 Granta	 Quantitative			
reports Research	EduPack Industry	approach Systematical			
papers	reports	assessment			

Criteria for evaluating sourcing factors

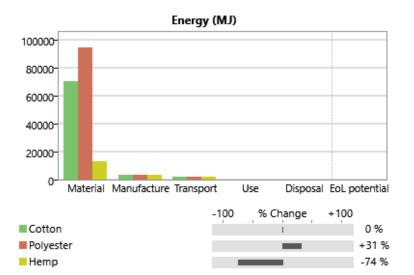
- Prioritize sourcing factors effectively
- Using supplier sustainability audit and industry reports
- 3 factors were identified and established
- Complicated by sourcing practices in the fashion industry
- 3 illustrative materials were chosen: Cotton, Hemp and Polyester

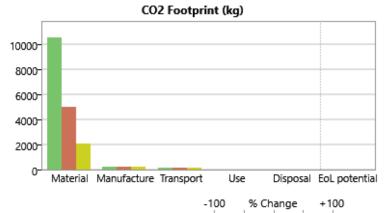
Cotton

Polyester

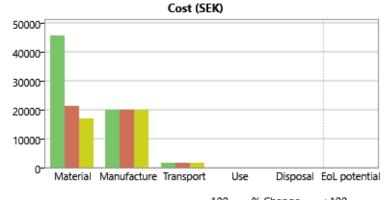
Environmental impact	Economic Consideration	Material characteristics
Carbon footprint	Price per kilo	Quality and strength
Water usage	Annual world production	Biodegradable
Energy efficiency		

Source: (Van Wheele & Rozemeijer, 2022)

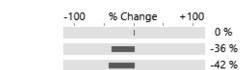

- Material
- Manufacturing: cutting and trimming
- Manufacturing in China
- Transport from Shanghai to Gothenburg (20730km)
- Sea cargo, 1000kg of product



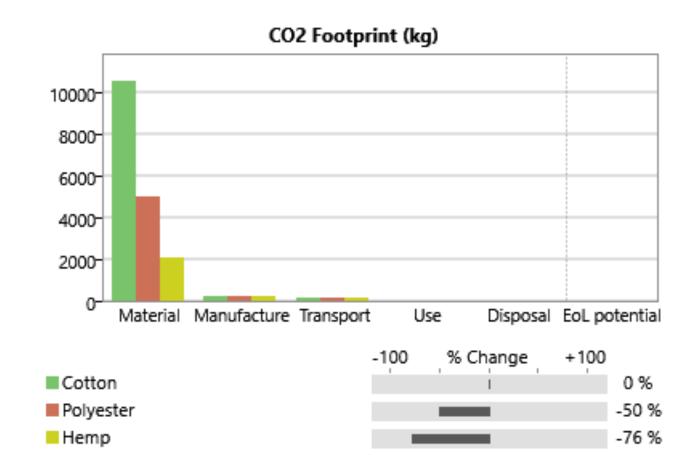
Material	Mass (kg)	Length of rolls (m)	Removed material from cutting and trimming (%)	Percentage assumed to be recovered at end of life (%)	Shipping distance (km)	
Cotton	1000	1000	25	100	20730	
Hemp	1000	1000	25	100	20730	
Polyester	1000	1000	25	100	20730	


• Material is a big contributor

• Consider material quality (cost)



Normalization of the data from EduPack and industry reports

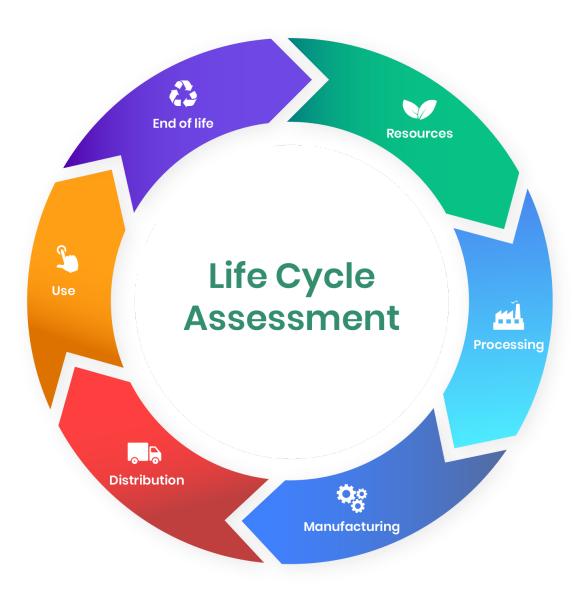

	Non benificial					Benificial	
Material	CO2 footprint (kg)	Water usage (liter/ usable kg)	Energy(MJ)	Cost(SEK/kg)	Biodegradable (years)	Annual world production (tonne/yr)	Tensile strength (MPa)
Cotton	11000	10229	76900	19,2	0.5	21100000	360
Hemp	2620	2123	19800	21,3	0.5	85400	550
Polyester	5500	127	101000	18,2	200	5400000	573
	Non benificial					Benificial	
Material	CO2 footprint (kg)	Water usage (liter/ usable kg)	Energy(MJ)	Cost(SEK/kg)	Biodegradable (years)	Annual world production (tonne/yr)	Tensile strength (MPa)
Cotton	0,2381818182	0,01241568091	0,2574772432	0,9479166667	1	0,3907407407	0,6282722513
Hemp	1	0,05982100801	1	0,8544600939	1	0,001581481481	0,9598603839
Polyester	0,4763636364	1	0,7613861386	1	0,0025	1	1

- WSM and WPM
- Hemp ranks highest
- Focus on CO2, cost, energy and breakdown/biodegradable

Weighted SUM									
Material	CO2 footprint (kg)	Water usage (liter/ usable kg)	Energy(MJ)	Cost(SEK/kg)	Biodegradable (years)	Annual world production (tonne/yr)	Tensile strength (MPa)		
	0,3	0,08	0,1	0,3	0,1	0,08	0,04	Preformance score	Rank
Cotton	0,07145454545	0,0009932544726	0,02574772432	0,284375	0,1	0,03125925926	0,02513089005	0,5389606736	3
Hemp	0,3	0,004785680641	0,1	0,2563380282	0,1	0,0001265185185	0,03839441536	0,7996446427	1
Polyester	0,1429090909	0,08	0,07613861386	0,3	0,00025	0,08	0,04	0,7192977048	2
WPM									
Material	CO2 footprint (kg)	Water usage (liter/ usable kg)	Energy(MJ)	Cost(SEK/kg)	Biodegradable (years)	Annual world production (tonne/yr)	Tensile strength (MPa)		
	0,3	0,08	0,1	0,3	0,1	0,08	0,04	Preformance score	Rank
Cotton	0,6502383529	0,703910824	0,8731198967	0,9840814554	1	0,9275794011	0,9815804842	0,3580734897	3
Hemp	1	0,7982672243	1	0,9539102938	1	0,5969323683	0,9983626444	0,4538050088	1
Polyester	0,8005373155	1	0,9731067758	1	0,5492802717	1	1	0,427893883	2

What are the implications?

- Material choice is extremely important in this instance
- Sustainable attributes
- Water usage
- Worker's salary and conditions



Changes to implement


- For this case study
- Focus on material choice in ideation phase
- Material substitution with similar properties

Sustainable practices

- Life cycle assessment
- Supply Chain Optimization
- Material Substitution
- Investment in Innovation

In conclusion

- What sustainable sourcing practices are relevant in the fashion industry?
- Life cycle assessment
- Material substitution
- Identify areas of improvement
- Strategize

Citations

Aarjan J. Van Weele and Frank Rozemeijer. (2022) PROCUREMENT AND SUPPLY

CHAIN MANAGEMENT CENGAGE

www.europarl.europa.eu. (2020). The impact of textile production and waste on the environment

(infographics) | Topics | European Parliament. [online] Available at:

https://www.europarl.europa.eu/topics/en/article/20201208STO93327/t he-impact-of-textileproduction-and-waste-on-the-environment-infographics.

Life cycle assessment of cotton T-shirts in China

https://link.springer.com/article/10.1007/s11367-015-0889-4

Eynde, H.V., Achten, W. and Muys, B. (2015). Comparative life cycle assessment of hemp and cotton

fibres used in Chinese textile manufacturing, Bio-ingénieur. [online] Semantic Scholar. Available at:

https://www.semanticscholar.org/paper/Comparative-life-cycleassessment-of-hemp-and-used-EyndeAchten/615d7fac7ceabecb6e17d21bc581ee66468d5cf2 2024-02-20. (Eynde, Achten and Muys, 2015)

https://www.mckinsey.com/industries/consumer-packaged-goods/ourinsights/consumers-care-about-sustainability-and-back-it-up-with-theirwallets

Braun, G., Som, C., Schmutz, M. and Hischier, R. (2021). Environmental Consequences of Closing the Textile Loop—Life Cycle Assessment of a Circular Polyester Jacket. Applied Sciences, 11(7),

p.2964. doi:https://doi.org/10.3390/app11072964.

Rotterdam to Gothenburg is 992 km https://www.fluentcargo.com/routes/amsterdam-nl/goteborgse#ocean-routes Shanghai to Gothenburg is 20,777 km https://www.fluentcargo.com/routes/shanghai-cn/goteborg-se#oceanroutes Redress Design Award. (2022.). Sustainability in Fibres. [online] Available at: https://www.redressdesignaward.com/academy/resources/guide/sustai nability-in-fibres . 2024-02-20 Tamene Wagaw and K. Murugesh Babu (2023). Textile Waste Recycling: A Need for a Stringent Paradigm Shift. AATCC journal of research.

doi:https://doi.org/10.1177/24723444231188342.2

Thank you for your attention